Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Animals (Basel) ; 14(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612278

RESUMO

Reproductive abnormalities have been observed in fallow deer populations in Hungary. We supposed mycotoxin contamination to be one of the possible causes because multi-mycotoxin contamination is known to be dangerous even at low toxin levels, especially for young animals. We investigated the spatial pattern of mycotoxin occurrences and the relationship between maternal and fetal mycotoxin levels. A total of 72 fallow deer embryos and their mothers were sampled in seven forested regions in Hungary in the 2020/2021 hunting season. We analyzed Aflatoxin (AF), Zearalenone (ZEA), Fumonizin B1 (FB1), DON, and T2-toxin concentrations in maternal and fetal livers by ELISA. AF was present in 70% and 82%, ZEA in 41% and 96%, DON in 90% and 98%, T2-toxin in 96% and 85%, and FB1 in 84% and 3% of hind and fetus livers, respectively. All mycotoxins passed into the fetus, but only Fumonizin B1 rarely passed. The individual variability of mycotoxin levels was extremely high, but the spatial differences were moderate. We could not prove a relation between the maternal and fetal mycotoxin concentrations, but we found an accumulation of ZEA and DON in the fetuses. These results reflect the possible threats of mycotoxins to the population dynamics and reproduction of wild fallow deer.

2.
Toxins (Basel) ; 16(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535820

RESUMO

In the context of nephrotoxic risks associated with environmental contaminants, this study focused on the impact of mycotoxin exposure on the renal health of laying hens, with particular attention to oxidative stress pathways. Sixty laying hens were assigned to three groups-a control group (CON), a low-dose mycotoxin group (LOW), and a high-dose mycotoxin group (HIGH)-and monitored for 72 h. Mycotoxin contamination involved T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and FB1 at their EU-recommended levels (low mix) and at double doses (high mix). Clinical assessments revealed no signs of toxicity or notable weight changes. Analysis of the glutathione redox system parameters demonstrated that the reduced glutathione content was lower than that in the controls at 48 h and higher at 72 h. Glutathione peroxidase activity increased in response to mycotoxin exposure. In addition, the gene expression patterns of key redox-sensitive pathways, including Keap1-Nrf2-ARE and the AhR pathway, were examined. Notably, gene expression profiles revealed dynamic responses to mycotoxin exposure over time, underscoring the intricate interplay of redox-related mechanisms in the kidney. This study sheds light on the early effects of mycotoxin mixtures on laying hens' kidneys and their potential for oxidative stress.


Assuntos
Fumonisinas , Micotoxinas , Toxina T-2 , Tricotecenos , Animais , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch , Galinhas , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Rim , Glutationa
3.
Biochim Biophys Acta Biomembr ; 1866(5): 184310, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38479610

RESUMO

Fumonisin B1 (FB1), a food-borne mycotoxin, is a cancer promoter in rodent liver and augments proliferation of initiated cells while inhibiting the growth of normal hepatocytes by disrupting lipid biosynthesis at various levels. HepG2 cancer cells exhibited resistance to FB1-induced toxic effects presumably due to their low content of polyunsaturated fatty acids (PUFA) even though FB1-typical lipid changes were observed, e.g. significantly increased phosphatidylethanolamine (PE), decreased sphingomyelin and cholesterol content, increased sphinganine (Sa) and sphinganine/sphingosine ratio, increased C18:1ω-9, decreased C20:4ω-6 content in PE and decreased C20:4ω-6_PC/PE ratio. Increasing PUFA content of HepG2 cells with phosphatidylcholine (PC) vesicles containing C20:4ω-6 (SAPC) or C22:6ω-3 (SDPC) disrupted cell survival, cellular redox status and induced oxidative stress and apoptosis. A partially protective effect of FB1 was evident in PUFA-enriched HepG2 cells which may be related to the FB1-induced reduction in oxidative stress and the disruption of key cell membrane constituents indicative of a resistant lipid phenotype. Interactions between different ω-6 and ω-3 PUFA, membrane constituents including cholesterol, and the glycerophospho- and sphingolipids and FB1 in this cell model provide further support for the resistant lipid phenotype and its role in the complex cellular effects underlying the cancer promoting potential of the fumonisins.

4.
Biosens Bioelectron ; 253: 116183, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452570

RESUMO

Fumonisin (FB) is a pervasive hazardous substance in the environment, presenting significant threats to human health and ecological systems. Thus, the selective and sensitive detection of fumonisin B1 (FB1) is crucial due to its high toxicity and wide distribution in corn, oats, and related products. In this work, we developed a novel and versatile fluorescent aptasensor by combining enzyme-assisted dual recycling amplification with 2D δ-FeOOH-NH2 nanosheets for the determination of FB1. The established CRISPR/Cas12a system was activated by using activator DNA (aDNA), which was released via a T7 exonuclease-assisted recycling reaction. Additionally, the activated Cas12a protein was utilized for non-specifically cleavage of the FAM-labeled single-stranded DNA (ssDNA-FAM) anchored on δ-FeOOH-NH2 nanosheets. The pre-quenched fluorescence signal was restored due to the desorption of the cleaved ssDNA-FAM. Due to the utilization of this T7 exonuclease-Cas12a-δ-FeOOH-NH2 aptasensor for signal amplification, the detection range of FB1 was expanded from 1 pg/mL to 100 ng/mL, with a limit of detection (LOD) as low as 0.45 pg/mL. This study not only provides novel insights into the development of fluorescence biosensors based on 2D nanomaterials combined with CRISPR/Cas12a, but also exhibits remarkable applicability in detecting other significant targets.


Assuntos
Técnicas Biossensoriais , Fumonisinas , Humanos , DNA de Cadeia Simples , Corantes Fluorescentes , Sistemas CRISPR-Cas , Limite de Detecção
5.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474242

RESUMO

Ceramides regulate phagocytosis; however, their exact function remains poorly understood. Here, we sought (1) to develop genetically encoded fluorescent tools for imaging ceramides, and (2) to use them to examine ceramide dynamics during phagocytosis. Fourteen enhanced green fluorescent protein (EGFP) fusion constructs based on four known ceramide-binding domains were generated and screened. While most constructs localized to the nucleus or cytosol, three based on the CA3 ceramide-binding domain of kinase suppressor of ras 1 (KSR1) localized to the plasma membrane or autolysosomes. C-terminally tagged CA3 with a vector-based (C-KSR) or glycine-serine linker (C-KSR-GS) responded sensitively and similarly to ceramide depletion and accumulation using a panel of ceramide modifying drugs, whereas N-terminally tagged CA3 (N-KSR) responded differently to a subset of treatments. Lipidomic and liposome microarray analysis suggested that, instead, N-KSR may preferentially bind glucosyl-ceramide. Additionally, the three probes showed distinct dynamics during phagocytosis. Despite partial autolysosomal degradation, C-KSR and C-KSR-GS accumulated at the plasma membrane during phagocytosis, whereas N-KSR did not. Moreover, the weak recruitment of C-KSR-GS to the endoplasmic reticulum and phagosomes was enhanced through overexpression of the endoplasmic reticulum proteins stromal interaction molecule 1 (STIM1) and Sec22b, and was more salient in dendritic cells. The data suggest these novel probes can be used to analyze sphingolipid dynamics and function in living cells.


Assuntos
Ceramidas , Corantes Fluorescentes , Proteínas Quinases , Ceramidas/metabolismo , Transdução de Sinais/fisiologia , Fagocitose
6.
Int J Food Microbiol ; 415: 110636, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38422676

RESUMO

In the present investigation, the effect of cinnamon oil (CO) (10, 30, 50 and 70 %) on the growth rate (mm/day) and aflatoxin B1 (AFB1) and fumonisin B1 (FB1) production of Aspergillus flavus (AF01) and Fusarium proliferatum (FP01) isolates, respectively was determined at optimum water activities (0.95 and 0.99 aw) and temperatures (25, 30 and 35 °C) on paddy and polished rice grains. The results showed that the growth rate, AFB1 and FB1 production of all the fungal isolates decreased with an increase in CO concentrations on both matrices. AF01 and FP01 failed to grow under all conditions on paddy at 50 % of CO concentration whereas both fungi were completely inhibited (No Growth-NG) at 70 % of CO on polished rice. Regarding mycotoxin production, 30 % of CO concentrations could inhibit AFB1 and FB1 production in both matrices (No Detection-ND). In this study, the production of mycotoxins was significantly influenced by cinnamon oil compared to the growth of both fungi. These results indicated the promising potential of CO in improving the quality of rice preservation in post-harvest; however, further investigations should be evaluated on the effects on the qualitative characteristics of grains. Especially, the prospective application of CO in rice storage in industry scales to mitigate mycotoxin contamination need also to be further researched. Moreover, collaboration between researchers, agricultural experts, and food industry should be set up to achieve effective and sustainable strategies for preserving rice.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Óleos Voláteis , Oryza , Aspergillus flavus , Cinnamomum zeylanicum , Óleos Voláteis/farmacologia , Aflatoxina B1
7.
Appl Microbiol Biotechnol ; 108(1): 228, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386129

RESUMO

Fusarium verticillioides is one of the most important fungal pathogens causing maize ear and stalk rots, thereby undermining global food security. Infected seeds are usually unhealthy for consumption due to contamination with fumonisin B1 (FB1) mycotoxin produced by the fungus as a virulence factor. Unveiling the molecular factors that determine fungal development and pathogenesis will help in the control and management of the diseases. Kex2 is a kexin-like Golgi-resident proprotein convertase that is involved in the activation of some important proproteins. Herein, we identified and functionally characterized FvKex2 in relation to F. verticillioides development and virulence by bioinformatics and functional genomics approaches. We found that FvKex2 is required for the fungal normal vegetative growth, because the growth of the ∆Fvkex2 mutant was significantly reduced on culture media compared to the wild-type and complemented strains. The mutant also produced very few conidia with morphologically abnormal shapes when compared with those from the wild type. However, the kexin-like protein was dispensable for the male role in sexual reproduction in F. verticillioides. In contrast, pathogenicity was nearly abolished on wounded maize stalks and sugarcane leaves in the absence of FvKEX2 gene, suggesting an essential role of Fvkex2 in the virulence of F. verticillioides. Furthermore, high-performance liquid chromatography analysis revealed that the ∆Fvkex2 mutant produced a significantly lower level of FB1 mycotoxin compared to the wild-type and complemented strains, consistent with the loss of virulence observed in the mutant. Taken together, our results indicate that FvKex2 is critical for vegetative growth, FB1 biosynthesis, and virulence, but dispensable for sexual reproduction in F. verticillioides. The study presents the kexin-like protein as a potential drug target for the management of the devastating maize ear and stalk rot diseases. Further studies should aim at uncovering the link between FvKex2 activity and FB1 biosynthesis genes. KEY POINTS: •The kexin-like protein FvKex2 contributes significantly to the vegetative growth of Fusarium verticillioides. •The conserved protein is required for fungal conidiation and conidial morphology, but dispensable for sexual reproduction. •Deletion of FvKEX2 greatly attenuates the virulence and mycotoxin production potential of F. verticillioides.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Masculino , Humanos , Micotoxinas/genética , Virulência
8.
J Food Sci ; 89(2): 1280-1293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193205

RESUMO

The Fusarium verticillioides produces a mycotoxin, that is, fumonisin b1 (Fb1), which commonly infects corn and agricultural commodities. The Fb1 showed hepatotoxicity, neurotoxicity, and carcinogenicity in animals. Hence, the present investigation aimed to evaluate the effect of apocynin (AP) on Fb1-induced neurotoxic effects and its mechanism in the mice model and cell line. The male Balb/c mice, with the 6.75 mg/kg bwt of Fb1 were injected subcutaneously for 5 days to induce neurotoxicity. A significant elevation of serotonin (5-HT) was observed in mice treated with Fb1 in the whole brain showing biogenic amines may reflect Fb1 neurotoxicity, but the negatively regulated mechanisms were attenuated by the pretreatment of AP. In addition, AP pretreatment normalized apoptotic changes in histology and immunohistochemistry studies. In Western blotting studies, apoptotic genes were upregulated and oxidative stress genes were downregulated due to Fb1 treatment; while treating with AP, these gene expressions were rectified. Further cell cytotoxicity was investigated by MTT and lactate dehydrogenase (LDH) assays in SH-SY5Y cell line. MTT and LDH assays indicated the IC50 value to be 150 µM of Fb1, which was protected by 100 µg of AP. The electron microscopy evaluated the Fb1-induced apoptotic conditions and its cell morphology recovery by AP. These results suggest that nicotinamide adenine dinucleotide phosphate hydrogen oxidase-mediated reactive oxygen species is the primary upstream signal leading to increased Fb1-mediated neurotoxicity in mice. The use of the antioxidant AP reversed the toxin-induced oxidative stress and apoptosis by its antioxidant potency.


Assuntos
Acetofenonas , Fumonisinas , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Masculino , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fumonisinas/toxicidade , Fumonisinas/metabolismo , Apoptose , Estresse Oxidativo , Modelos Animais
9.
Toxicon ; 237: 107531, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013056

RESUMO

Contamination with fumonisin B1 (FB1) represents a global health problem. FB1 exposure may also trigger intestinal injury by activating inflammatory responses, leading to a reduction in production performance and economic benefits. However, the mechanism of FB1-induced intestinal inflammatory injury is still unclear. At the same time, it is urgent to develop antibiotic alternatives and therapeutic targets to alleviate antibiotic resistance and to ensure effective treatment of intestinal inflammatory injury. We combined network pharmacology and in vitro experiments to explore the core therapeutic targets and potential mechanism of luteolin in FB1-induced intestinal inflammatory injury. Network pharmacology and molecular docking revealed that nuclear factor kappa B (NF-κB) p65, extracellular signal-regulated kinase (ERK), interleukin 6 (IL-6) and IL-1ß are the important targets, and the NF-κB and ERK signalling pathways are critical in FB1-induced intestinal inflammatory injury. Besides, in vitro experiments further demonstrated that luteolin can inhibit FB1-induced intestinal inflammatory injury by inhibiting activation of the NF-κB and ERK signalling pathways and reducing the expression of IL-6 and IL-1ß in IPEC-J2 cells. We have comprehensively illustrated the potential targets and molecular mechanism by which luteolin can alleviate FB1-induced intestinal inflammatory injury. Luteolin may be an effective antibiotic alternative to prevent intestinal inflammatory injury.


Assuntos
Luteolina , NF-kappa B , NF-kappa B/metabolismo , Luteolina/farmacologia , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Antibacterianos
10.
Toxicol Lett ; 391: 55-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092155

RESUMO

This study investigates gene expression changes in laying hens exposed to trichothecene mycotoxins, known to induce oxidative stress and affect xenobiotic transformation and antioxidants. A 3-day feeding trial tested low and high doses of T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and FB1 in hen feed. Results showed increased expression of AHR, AHRR, HSP90, and CYP1A2 genes on days 2 and 3, suggesting a response to mycotoxin exposure. High doses down-regulated CYP1A2, AHR, and AHRR on day 1. KEAP1 expression decreased on day 1 but increased dose-dependently on days 2 and 3. NRF2 was up-regulated by low and down-regulated by high doses on day 1, then increased on days 2 and 3. Antioxidant-related genes (GPX3, GPX4, GSS, GSR) showed dose-dependent responses. Low doses up-regulated GPX3 and GPX4 throughout, while high doses up-regulated GPX3 on days 2 and 3 and GPX4 on day 3. GSS was up-regulated on day 3. Results indicate that toxic metabolites formed by phase I biotransformation rapidly induce ROS formation at low doses through the AHR/Hsp90/CYP1A2 pathway at the gene expression level, but at high levels, ROS-induced oxidative stress manifests later. Study showed simultaneous activation of redox-sensitive pathways: aryl hydrocarbon receptor (Ahr) and nuclear factor erythroid-derived 2-like 2 (Nrf2) by multi-mycotoxin exposure.


Assuntos
Fusarium , Micotoxinas , Toxina T-2 , Feminino , Animais , Micotoxinas/toxicidade , Fusarium/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Galinhas , Citocromo P-450 CYP1A2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Toxina T-2/toxicidade , Toxina T-2/metabolismo
11.
Nat Prod Res ; : 1-5, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099338

RESUMO

The present study entails first time investigation on chemical characterisation of Pinus roxburghii essential oil (PEO) with its efficacy assessment against Fusarium proliferatum contamination and fumonisin synthesis in stored rice samples. The GC-MS analysis indicated α-Pinene, terpinolene, and O-cymene as major components of PEO. The PEO displayed complete inhibition of F. proliferatum growth and fumonisin B1, B2 biosynthesis at 1.5, 1.0, and 0.75 µL/mL, respectively. The antifungal activity of PEO was associated with impairment in ergosterol biosynthesis and enhanced leakage of vital cellular cations (Ca2+, Mg2+, and K+), nucleic acids, and proteins which validated plasma membrane as a plausible site of action. Moreover, the PEO showed promising antioxidant activity and in situ efficacy for preservation of rice samples against F. proliferatum infestation, and fumonisin B1, B2 contamination. Further, the high LD50 value in mammalian model strengthens the application of Pinus roxburghii essential oil as green fungitoxicant in agricultural industries.

12.
Toxics ; 11(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38133381

RESUMO

Mycotoxins are produced by more than one hundred fungi and produce secondary metabolites that contaminate various agricultural commodities, especially rice and corn. Their presence in the food chain is considered a serious problem worldwide. In recent years, a link between exposure to mycotoxins and impaired fertility has been suggested. Consequently, it has become vital to investigate the interactive effects of these mycotoxins on ovarian function. In this study, we investigated the intergenerational effects of the mycotoxin fumonisin B1 (FB1) on ovarian structure and function. Virgin Wistar albino female rats were separated into control and FB1 treatment groups and examined from day 6 of pregnancy until delivery (20 and 50 mg/kg b.w./day). The obtained female rats of the first (F1) and second generations (F2) were euthanized at 4 weeks of age, and ovary samples were collected. We found that the ovary weight index increased with the high dose of the treatment (50 mg/kg b.w./day) among both F1 and F2, in a manner similar to that observed in polycystic ovary syndrome. As expected, FB1 at a high dose (50 mg/kg b.w.) reduced the number of primordial follicles in F1 and F2, leading to an accelerated age-related decline in reproductive capacity. Moreover, it reduced the fertility rate among the F1 female rats by affecting follicle growth and development, as the number of secondary and tertiary follicles decreased. Histopathological changes were evidenced by the altered structures of most of the growing follicle oocytes, as revealed by a thinning irregular zona pellucida and pyknosis in granulosa cells. These findings are concomitant with steroidogenesis- and folliculogenesis-related gene expression, as evidenced by the decrease in CYP19 activity and estrogen receptor beta (ESR2) gene expression. Additionally, GDF-9 mRNA levels were significantly decreased, and IGF-1 mRNA levels were significantly increased. However, the results from the ovaries of the F2 treatment groups were different and unexpected. While there was no significant variation in CYP19 activity compared to the control, the ESR2 significantly increased, leading to stereological and histopathological changes similar to those of the control, except for some altered follicles. The hallmark histological feature was the appearance of vacuolar structures within the oocyte and between granulosa cell layers. Interestingly, the autophagic marker LC3 was significantly increased in the F2 offspring, whereas this protein was significantly decreased in the F1 offspring. Therefore, we suggest that the promotion of autophagy in the ovaries of the F2 offspring may be considered a recovery mechanism from the effect of prenatal FB1 exposure. Thus, autophagy corrected the effect of FB1 during the early life of the F1 female rats, leading to F2 offspring with ovarian structure and function similar to those of the control. However, the offspring, treated female rats may experience early ovarian aging because their ovarian pool was affected.

13.
Nutrients ; 15(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37960333

RESUMO

In this study, the soluble, but non-digestible, longan (Dimocarpus longan Lour.) polysaccharides (LP) were extracted from dried longan fruits and then chemically selenylated to produce two selenylated products, namely SeLP1 and SeLP2, with different selenylation extents. The aim was to investigate their protective effects on rat intestinal epithelial (IEC-6) cells exposed to the food toxin fumonisin B1 (FB1). LP only contained total Se content of less than 0.01 g/kg, while SeLP1 and SeLP2 were measured with respective total Se content of up to 1.46 and 4.79 g/kg. The cell viability results showed that these two selenylated products were more efficient than LP in the IEC-6 cells in alleviating FB1-induced cell toxicity, suppressing lactate dehydrogenase (LDH) release, and decreasing the generation of intracellular reactive oxygen species (ROS). These two selenylated products were also more effective than LP in combating FB1-induced barrier disruption via increasing the transepithelial electric resistance (TEER), reducing the paracellular permeability, decreasing the mitochondrial membrane potential (MMP) loss, and maintaining cell barrier integrity by upregulating the tight-junction-related genes and proteins. FB1 caused cell oxidative stress and barrier dysfunction by activating the MAPK and mitochondrial apoptosis signaling pathways, while SeLP1 and SeLP2 could regulate the tMAPK- and apoptosis-related proteins to suppress the FB1-mediated activation of the two pathways. Overall, SeLP2 was observed to be more active than SeLP1 in the IEC-6 cells. In conclusion, the chemical selenylation of LP caused an activity enhancement to ameliorate the FB1-induced cell cytotoxicity and intestinal barrier disruption. Meanwhile, the increased selenylation of LP would endow the selenylated product SeLP2 with more activity.


Assuntos
Fumonisinas , Sapindaceae , Ratos , Animais , Fumonisinas/farmacologia , Fumonisinas/toxicidade , Intestinos , Células Epiteliais
14.
J Agric Food Chem ; 71(48): 19121-19128, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38009689

RESUMO

Fumonisin B1 (FB1), as one of the highest toxicity mycotoxins, poses a serious threat to animal and human health, even at low concentrations. It is significant and challenging to develop a sensitive and reliable analytical device. Herein, a paper-based electrochemical aptasensor was designed utilizing tetrahedral DNA nanostructures (TDNs) to controllably anchor an aptamer (Apt), improving the recognition efficiency of Apt to its target. First, gold nanoparticles (AuNPs)@MXenes were used as a sensing substrate with good conductivity and modified on the electrode for immobilization of complementary DNA-TDNs (cDNA-TDNs). In the absence of FB1, numerous Apt-Au@Pt nanocrystals (NCs) was hybridized with cDNA and assembled on the sensing interface, which accelerated the oxidation of TMB with H2O2 and produced a highly amplified differential pulse voltammetry (DPV) signal. When the target FB1 specifically bound to its Apt, the electrochemical signal was decreased by releasing the Apt-Au@Pt NCs from double-stranded DNA (dsDNA). On account of the strand displacement reaction by FB1 triggering, the aptasensor had a wider dynamic linear range (from 50 fg/mL to 100 ng/mL) with a lower limit of detection (21 fg/mL) under the optimized conditions. More impressively, the designed FB1 aptasensor exhibited satisfactory performance in corn and wheat samples. Therefore, the TDN-engineered sensing platform opens an effective approach for sensitive and accurate analysis of FB1, holding strong potential in food safety and public health.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Animais , Humanos , Ouro/química , DNA Complementar , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , DNA/química , Técnicas Eletroquímicas , Limite de Detecção
15.
Toxins (Basel) ; 15(11)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999515

RESUMO

The Med1 transcriptional coactivator is a crucial component of the Mediator middle complex, which regulates the expression of specific genes involved in cell development, differentiation, reproduction, and homeostasis. The Med1 LxxLL motif, a five-amino-acid peptide sequence, is essential for Med1-mediated gene expression. Our previous study revealed that the disruption of the Med1 subunit leads to a significant increase in fumonisin B1 (FB1) production in the maize pathogen Fusarium verticillioides. However, our understanding of how Med1 regulates FB1 biosynthesis in F. verticillioides, particularly through the Med1 LxxLL motifs, remains limited. To characterize the role of LxxLL motifs, we generated a series of Med1 LxxLL deletion and amino acid substitution mutants. These mutants exhibited impaired mycelial growth and conidia germination while demonstrating enhanced conidia production and virulence. Similar to the Med1 deletion mutant, Med1 LxxLL motif mutants also exhibited increased FB1 biosynthesis in F. verticillioides. Proteomic profiling revealed that the Med1 LxxLL motif regulated the biosynthesis of several key substances that affected FB1 production, including starch and carotenoid. Subsequent studies demonstrated that the production of amylopectin, which is strongly linked to FB1 biosynthesis, was significantly increased in Med1 LxxLL motif mutants. In addition, the disruption of carotenoid metabolic genes decreased carotenoid content, thus stimulating FB1 biosynthesis in F. verticillioides. Taken together, our results provide valuable insights into how the Med1 LxxLL motif regulates FB1 biosynthesis in the mycotoxigenic fungus F. verticillioides.


Assuntos
Fumonisinas , Fusarium , Fumonisinas/metabolismo , Proteômica , Fusarium/metabolismo , Carotenoides/metabolismo , Zea mays/microbiologia
16.
Toxins (Basel) ; 15(11)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999516

RESUMO

Mycotoxins are considered the most threating natural contaminants in food. Among these mycotoxins, aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are the most prominent fungal metabolites that represent high food safety risks, due to their widespread co-occurrence in several food commodities, and their profound toxic effects on humans. Considering the ethical and more humane animal research, the 3Rs (replacement, reduction, and refinement) principle has been promoted in the last few years. Therefore, this review aims to summarize the research studies conducted up to date on the toxicological effects that AFB1 and FB1 can induce on human health, through the examination of a selected number of in vitro studies. Although the impact of both toxins, as well as their combination, were investigated in different cell lines, the majority of the work was carried out in hepatic cell lines, especially HepG2, owing to the contaminants' liver toxicity. In all the reviewed studies, AFB1 and FB1 could invoke, after short-term exposure, cell apoptosis, by inducing several pathways (oxidative stress, the mitochondrial pathway, ER stress, the Fas/FasL signaling pathway, and the TNF-α signal pathway). Among these pathways, mitochondria are the primary target of both toxins. The interaction of AFB1 and FB1, whether additive, synergistic, or antagonistic, depends to great extent on FB1/AFB1 ratio. However, it is generally manifested synergistically, via the induction of oxidative stress and mitochondria dysfunction, through the expression of the Bcl-2 family and p53 proteins. Therefore, AFB1 and FB1 mixture may enhance more in vitro toxic effects, and carry a higher significant risk factor, than the individual presence of each toxin.


Assuntos
Fumonisinas , Micotoxinas , Animais , Humanos , Aflatoxina B1/toxicidade , Fumonisinas/toxicidade , Micotoxinas/toxicidade , Fígado
17.
Toxins (Basel) ; 15(11)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999527

RESUMO

Fumonisin B1 (FB1), a mycotoxin produced by Fusarium verticillioides, is one of the most common pollutants in natural foods and agricultural crops. It can cause chronic and severe health issues in humans and animals. The aim of this study was to evaluate the transgenerational effects of FB1 exposure on the structure and function of the kidneys in offspring. Virgin female Wistar rats were randomly divided into three groups: group one (control) received sterile water, and groups two and three were intragastrically administered low (20 mg/kg) and high (50 mg/kg) doses of FB1, respectively, from day 6 of pregnancy until delivery. Our results showed that exposure to either dose of FB1 caused histopathological changes, such as atrophy, hypercellularity, hemorrhage, calcification, and a decrease in the glomerular diameter, in both the first and second generations. The levels of the antioxidant markers glutathione, glutathione S-transferase, and catalase significantly decreased, while malondialdehyde levels increased. Moreover, autophagy was induced, as immunofluorescence analysis revealed that LC-3 protein expression was significantly increased in both generations after exposure to either dose of FB1. However, a significant decrease in methyltransferase (DNMT3) protein expression was observed in the first generation in both treatment groups (20 mg/kg and 50 mg/kg), indicating a decrease in DNA methylation as a result of early-life exposure to FB1. Interestingly, global hypomethylation was also observed in the second generation in both treatment groups despite the fact that the mothers of these rats were not exposed to FB1. Thus, early-life exposure to FB1 induced nephrotoxicity in offspring of the first and second generations. The mechanisms of action underlying this transgenerational effect may include oxidative stress, autophagy, and DNA hypomethylation.


Assuntos
Fumonisinas , Micotoxinas , Humanos , Ratos , Feminino , Animais , Micotoxinas/toxicidade , Metilação de DNA , Ratos Wistar , Fumonisinas/toxicidade , Estresse Oxidativo , Autofagia , DNA
18.
Environ Sci Pollut Res Int ; 30(53): 114438-114451, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858030

RESUMO

Fumonisin B1 (FB1) is a widely present mycotoxin that accumulates in biological systems and poses a health risk to animals. However, few studies have reported the molecular mechanism by which FB1 induces nephrotoxicity. The aim of this study was to assess the extent of nephrotoxicity during FB1 exposure and the possible molecular mechanisms behind it. Therefore, 180 young quails were equally divided into two groups. The control group was fed typical quail food, while the experimental group was fed quail food containing 30 mg·kg-1 FB1. Various parameters were assessed, which included histopathological, ultrastructural changes, levels of biochemical parameters, oxidative indicators, inflammatory factors, possible target organelles mitochondrial and endoplasmic reticulum (ER)-related factors, nuclear xenobiotic receptors (NXR) response, and cytochrome P450 system (CYP450s)-related factors in the kidneys on days 14, 28, and 42. The results showed that FB1 can induce oxidative stress through NXR response and disorder of the CYP450s system, leading to mitochondrial dysfunction and ER stress, promoting the expression of inflammatory factors (including IL-1ß, IL-6, and IL-8) and causing kidney damage. This study elucidated the possible molecular mechanism by which FB1 induces nephrotoxicity in young quails.


Assuntos
Fumonisinas , Micotoxinas , Animais , Codorniz , Fígado/metabolismo , Fumonisinas/toxicidade , Micotoxinas/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo
19.
J Agric Food Chem ; 71(44): 16752-16762, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37822021

RESUMO

Fumonisin B1 (FB1) is a representative form of fumonisin and is widely present in food and feed. Hydrolyzed fumonisin B1 (HFB1) emerges as a breakdown product of FB1, which is accompanied by FB1 alterations. While previous studies have primarily focused on the liver or kidney toxicity of FB1, with limited studies existing on its neurotoxicity and even fewer on the toxicity of HFB1, this study focuses on the neurotoxicity of FB1 and HFB1 exposure in mice investigated by the open field test, Morris water maze test, histopathological analysis, and nontargeted metabolomics. Further, the levels of oxidative stress-related indices, neurotransmitters, and sphingolipids in the brain were measured to analyze their correlation with behavioral outcomes. The results showed that both FB1 (5 mg/kg) and HFB1 (2.8 mg/kg) reduced autonomous exploratory behavior in mice, impaired spatial learning and memory, and caused mild abnormalities in the brain structure. Quantitative analysis further indicated that exposure to FB1 and HFB1 disrupted neurotransmitter homeostasis, exacerbated oxidative stress, and significantly increased the sphinganine/sphingosine (Sa/So) ratio. Moreover, HFB1 exhibited neurotoxic effects similar to those of FB1, emphasizing the need to pay attention to the neurotoxicity effect of HFB1. These findings underscore the importance of understanding the risks and potential neurological damage associated with FB1 and HFB1 exposure, highlighting the necessity for further research in this crucial field.


Assuntos
Fumonisinas , Camundongos , Animais , Fumonisinas/análise , Memória Espacial , Esfingolipídeos , Fígado/metabolismo
20.
Toxins (Basel) ; 15(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37756003

RESUMO

Maize is frequently contaminated with multiple mycotoxins, especially those produced by Aspergillus flavus and Fusarium verticillioides. As mycotoxin contamination is a critical factor that destabilizes global food safety, the current review provides an updated overview of the (co-)occurrence of A. flavus and F. verticillioides and (co-)contamination of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize. Furthermore, it summarizes their interactions in maize. The gathered data predict the (co-)occurrence and virulence of A. flavus and F. verticillioides would increase worldwide, especially in European cold climate countries. Studies on the interaction of both fungi regarding their growth mainly showed antagonistic interactions in vitro or in planta conditions. However, the (co-)contamination of AFB1 and FB1 has risen worldwide in the last decade. Primarily, this co-contamination increased by 32% in Europe (2010-2020 vs. 1992-2009). This implies that fungi and mycotoxins would severely threaten European-grown maize.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...